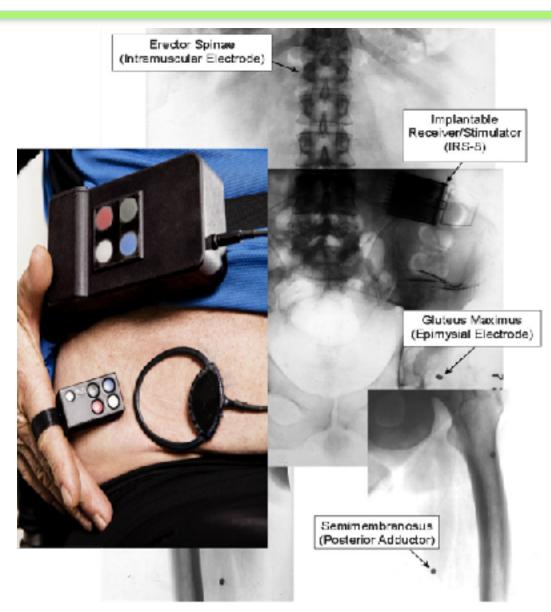


Automatic Application Of Neural Stimulation During Wheelchair Propulsion Enances Recovery Of Upright Sitting From Destabilizing Events

Clinical Problem

- Tips and falls are leading causes of injury for wheelchair users
- Riding surface and environmental factors contribute to wheelchair instability, and ultimately, falls
 - Collisions with obstacles, sharp turns, uneven or inclined surfaces, and curb drops


Conventional Approaches

- Seat belts, cushions, and supports
 - Restrict desired motions in daily activities
 - Cause pressure ulcers, skin tears, lowered self-esteem, and even asphyxiation

Neural Stimulation

- Small currents applied to peripheral nerves cause otherwise paralyzed muscles to contract
 - Intramuscular electrodes at T12-L-3 spinal nerves activate Erector Spinae (ES), Quadratus Lumborum (QL) & Iliopsoas (IL) to control lumbar spine & pelvis
- Electrodes inserted at gluteal & sciatic nerves extend & adduct the hip


Previous Work

Neural Stimulation can:

- Normalize vertebral alignment & restore anterior pelvic tilt
- Expand bimanual work volume & sagittal reach
- Stabilize sitting against perturbations by up to 45%
- Automatically return to erect for full forward flexion
- Enable retrieval of objects from the floor

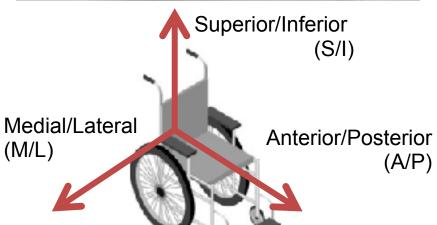
WITHOUT Neural Stimulation

WITH Tilt-Triggered Stimulation

C7 AIS C

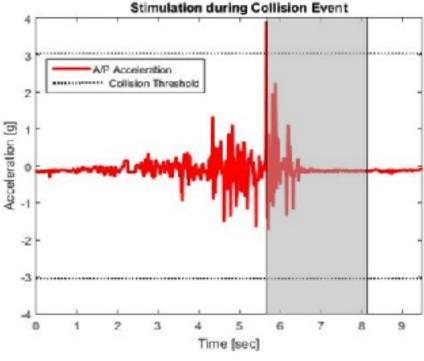
Kukke S, et al. IEEE TNSRE 12, 2004 Triolo R et al., APMR 90, 2009 Triolo R et al., APMR 94, 2013a, 2013b Murphy J et al., JRRD 51, 2014 Audu ML et al., JNER 12(8), 2015.

Research Aims

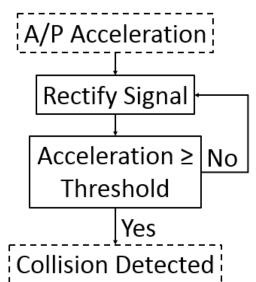

- 1. Develop algorithms to automatically detect potentially destabilizing wheelchair conditions
 - Collisions
 - Sharp Turns
- Generate appropriate stimulation patterns to activate hip and trunk muscles to regain or maintain stability
- 3. Evaluate system effectiveness in terms of objective and subjective measures

Instrumentation

- · Anthropomorphic Crash Dummy
 - Avoid potentially injurious experiments with live subjects
 - Collect preliminary data to standardize methods
- Wireless IMU (Inertial Measurement Unit)
 - Tri-axial accelerometers & gyroscopes
 - Affix to center rear crossbar
- VICON motion capture system

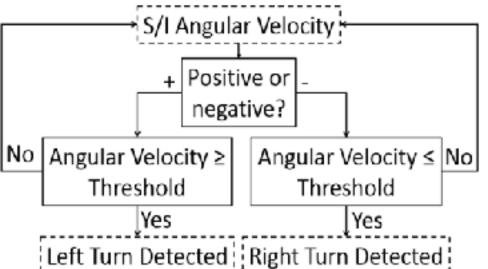


Collision Algorithm

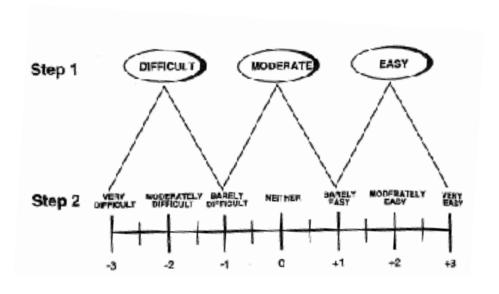


*Critical velocity = 1.75m/s

Consistent velocity ~ 1.5 m/sec Peak deceleration ~ 4g


Threshold = Mean Peak $|AP_{acc}|$ - 2SD

Turn Algorithm


*Rollover risk > 1.5m/s @ 25cm radius

Turn threshold= Mean Peak |SI_{av}| - 2SD

SCI Testing

Subject	Age	Gender	Injury Level	AIS Grade	Date of Injury	
SI	51	М	C7	В	10/11/2002	
82	41	F	T3	Α	2/13/2012	
S3	59	М	T4	В	3/9/2008	
S4	44	F	C7	С	3/13/1998	

- Four implant recipients
- 20 Calibration Trials
 - WITHOUT stimulation
- 10 Randomized Test Trials
 - 5 WITH stimulation
 - 5 WITHOUT stimulation

Quantitative Outcomes

- Detection Accuracy
- Detection Delay
- Maximum Trunk Angle
- Time to Restabilize Posture

Qualitative Outcomes

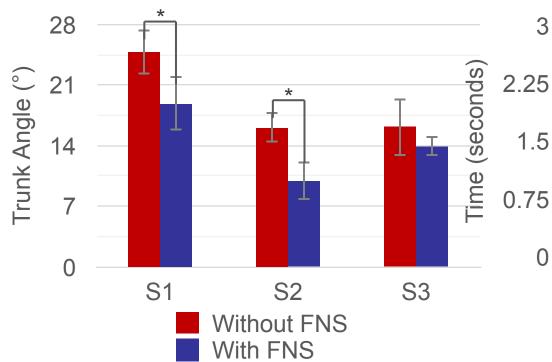
Usability Rating Scale

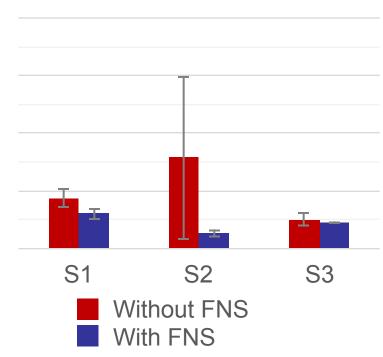
Steinfeld E, Danford GS. Enabling Environments, 1999.

Results: Collisions

WITHOUT Stimulation

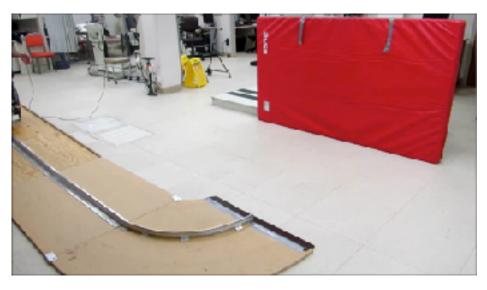
C7 AIS C


WITH Stimulation


Results: Collisions

Detection	Detection
Accuracy	Delay
93%	63 ± 48 ms

Average Maximum AP Trunk Angle



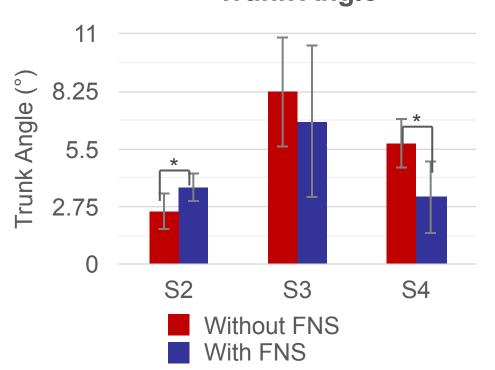
Return Time to Erect Posture

Results: Collisions

WITHOUT Stimulation

T4 AIS B

WITH Stimulation


CONFIDENTIAL

Results: Turns

Average Maximum ML Trunk Angle

ML Lean Effects Mixed:

S2 increased

S3 unchanged

S4 reduced

Turn detection may be too slow to be effective

Preparatory strategies prior to turn

Results: URS

Median URS		SI	\$2	S3	S4	
Collisions	Without FNS	0	2	3	-	
	With FNS	1	3	3	-	
Tums	Without FNS	-	-3	2	-1	
	With FNS	-	0	2	1	

Subjective perceptions of ease/difficulty improved (S1, S2, S4) or unchanged (S3) with automatically triggered neural stimulation for BOTH collisions and turns, regardless of physical measurements

- Simple algorithms and inertial measurements accurately detect WC collisions (93%) and turns (90%)
- Appropriately timed hip & trunk muscle activation can improve recovery from forward collisions
 - Forward lean significantly reduced (p<0.05) or unchanged
 - Return time varied but trended toward improvement
 - Collisions detected rapidly (63 ms) from WC acceleration
- Turns detected from WC angular velocity, while accurate, were too slow (309 ms) to be consistently effective
 - ML lean and recovery time results with stimulation mixed
 - Predictive inertial parameters (angular acceleration) need to be investigated
- Subjective ratings of difficulty improved with stimulation consistently (3/4 subjects) for both collisions & turns

Acknowledgements

Team:

- Kiley Armstrong
- Musa Audu
- Kevin Foglyano
- Lisa Lombardo
- Gilles Pinault
- Rescue Randy
- S1, S2, S3, S4

T6 AIS A (with stimulation)

Funding:

 Merit Review (B6406T) from Rehabilitation R&D Service of the U.S. Department of Veterans Affairs

